21 research outputs found

    Symbolic QED Pre-silicon Verification for Automotive Microcontroller Cores: Industrial Case Study

    Full text link
    We present an industrial case study that demonstrates the practicality and effectiveness of Symbolic Quick Error Detection (Symbolic QED) in detecting logic design flaws (logic bugs) during pre-silicon verification. Our study focuses on several microcontroller core designs (~1,800 flip-flops, ~70,000 logic gates) that have been extensively verified using an industrial verification flow and used for various commercial automotive products. The results of our study are as follows: 1. Symbolic QED detected all logic bugs in the designs that were detected by the industrial verification flow (which includes various flavors of simulation-based verification and formal verification). 2. Symbolic QED detected additional logic bugs that were not recorded as detected by the industrial verification flow. (These additional bugs were also perhaps detected by the industrial verification flow.) 3. Symbolic QED enables significant design productivity improvements: (a) 8X improved (i.e., reduced) verification effort for a new design (8 person-weeks for Symbolic QED vs. 17 person-months using the industrial verification flow). (b) 60X improved verification effort for subsequent designs (2 person-days for Symbolic QED vs. 4-7 person-months using the industrial verification flow). (c) Quick bug detection (runtime of 20 seconds or less), together with short counterexamples (10 or fewer instructions) for quick debug, using Symbolic QED

    Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    Get PDF
    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The mixtures cover a RON range of 0-100, with the majority being in the 70-100 range. A parametric simulation study across a temperature range of 650-950 K and pressure range of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore, temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling the antiknock behavior of the fuels

    Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    Get PDF
    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The mixtures cover a RON range of 0-100, with the majority being in the 70-100 range. A parametric simulation study across a temperature range of 650-950 K and pressure range of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore, temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling the antiknock behavior of the fuels

    Noise Suppression and Edge Preservation for Low-Dose COVID-19 CT Images Using NLM and Method Noise Thresholding in Shearlet Domain

    No full text
    In the COVID-19 era, it may be possible to detect COVID-19 by detecting lesions in scans, i.e., ground-glass opacity, consolidation, nodules, reticulation, or thickened interlobular septa, and lesion distribution, but it becomes difficult at the early stages due to embryonic lesion growth and the restricted use of high dose X-ray detection. Therefore, it may be possible for a patient who may or may not be infected with coronavirus to consider using high-dose X-rays, but it may cause more risks. Conclusively, using low-dose X-rays to produce CT scans and then adding a rigorous denoising algorithm to the scans is the best way to protect patients from side effects or a high dose X-ray when diagnosing coronavirus involvement early. Hence, this paper proposed a denoising scheme using an NLM filter and method noise thresholding concept in the shearlet domain for noisy COVID CT images. Low-dose COVID CT images can be further utilized. The results and comparative analysis showed that, in most cases, the proposed method gives better outcomes than existing ones
    corecore